
r

Computer Graphics

i

About the Tutorial

To display a picture of any size on a computer screen is a difficult process.

Computer graphics are used to simplify this process. Various algorithms and

techniques are used to generate graphics in computers. This tutorial will help you

understand how all these are processed by the computer to give a rich visual

experience to the user.

Audience

This tutorial has been prepared for students who don’t know how graphics are

used in computers. It explains the basics of graphics and how they are

implemented in computers to generate various visuals.

Prerequisites

Before you start proceeding with this tutorial, we assume that you are already

aware of the basic concepts of C programming language and basic mathematics.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Computer Graphics

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. COMPUTER GRAPHICS – BASICS ... 1

Cathode Ray Tube ... 1

Raster Scan .. 2

Application of Computer Graphics ... 3

2. LINE GENERATION ALGORITHM ... 5

DDA Algorithm .. 5

Bresenham’s Line Generation .. 6

Mid-Point Algorithm .. 9

3. CIRCLE GENERATION ALGORITHM ... 11

Bresenham’s Algorithm ... 11

Mid Point Algorithm .. 13

4. POLYGON FILLING .. 16

Scan Line Algorithm ... 16

Flood Fill Algorithm ... 17

Boundary Fill Algorithm ... 18

4-Connected Polygon ... 18

8-Connected Polygon ... 19

Inside-outside Test .. 21

Computer Graphics

iii

5. VIEWING AND CLIPPING ... 24

Point Clipping .. 24

Line Clipping .. 24

Cohen-Sutherland Line Clippings ... 25

Cyrus-Beck Line Clipping Algorithm ... 27

Polygon Clipping (Sutherland Hodgman Algorithm) ... 28

Text Clipping .. 29

Bitmap Graphics .. 31

6. 2D TRANSFORMATION ... 33

Homogenous Coordinates ... 33

Translation .. 33

Rotation .. 34

Scaling ... 36

Reflection .. 37

Shear ... 38

Composite Transformation .. 39

7. 3D GRAPHICS ... 41

Parallel Projection ... 41

Orthographic Projection .. 42

Oblique Projection ... 43

Isometric Projections ... 43

Perspective Projection ... 44

Translation .. 45

Rotation .. 46

Scaling ... 47

Shear ... 48

Computer Graphics

iv

Transformation Matrices ... 49

8. CURVES .. 51

Types of Curves ... 51

Bezier Curves ... 52

Properties of Bezier Curves .. 52

B-Spline Curves .. 53

Properties of B-spline Curve .. 54

9. SURFACES .. 55

Polygon Surfaces ... 55

Polygon Tables .. 55

Plane Equations ... 57

Polygon Meshes .. 57

10. VISIBLE SURFACE DETECTION ... 59

Depth Buffer (Z-Buffer) Method .. 59

Scan-Line Method .. 61

Area-Subdivision Method .. 61

Back-Face Detection .. 62

A-Buffer Method ... 64

Depth Sorting Method ... 65

Binary Space Partition (BSP) Trees ... 66

11. FRACTALS ... 68

What are Fractals? ... 68

Generation of Fractals ... 68

Geometric Fractals .. 69

12. COMPUTER ANIMATION .. 71

Computer Graphics

v

Animation Techniques ... 71

Key Framing ... 72

Morphing... 73

Computer Graphics

1

Computer graphics is an art of drawing pictures on computer screens with the help of

programming. It involves computations, creation, and manipulation of data. In other

words, we can say that computer graphics is a rendering tool for the generation and

manipulation of images.

Cathode Ray Tube

The primary output device in a graphical system is the video monitor. The main

element of a video monitor is the Cathode Ray Tube (CRT), shown in the following

illustration.

The operation of CRT is very simple:

1. The electron gun emits a beam of electrons (cathode rays).

2. The electron beam passes through focusing and deflection systems that direct it

towards specified positions on the phosphor-coated screen.

3. When the beam hits the screen, the phosphor emits a small spot of light at each

position contacted by the electron beam.

4. It redraws the picture by directing the electron beam back over the same screen

points quickly.

Figure: Cathode Ray Tube

1. COMPUTER GRAPHICS – BASICS

Computer Graphics

2

There are two ways (Random scan and Raster scan) by which we can display an object

on the screen.

Raster Scan

In a raster scan system, the electron beam is swept across the screen, one row at a

time from top to bottom. As the electron beam moves across each row, the beam

intensity is turned on and off to create a pattern of illuminated spots.

Picture definition is stored in memory area called the Refresh Buffer or Frame

Buffer. This memory area holds the set of intensity values for all the screen points.

Stored intensity values are then retrieved from the refresh buffer and “painted” on the

screen one row (scan line) at a time as shown in the following illustration.

Each screen point is referred to as a pixel (picture element) or pel. At the end of

each scan line, the electron beam returns to the left side of the screen to begin

displaying the next scan line.

Figure: Raster Scan

Random Scan (Vector Scan)

In this technique, the electron beam is directed only to the part of the screen where

the picture is to be drawn rather than scanning from left to right and top to bottom as

in raster scan. It is also called vector display, stroke-writing display, or

calligraphic display.

Picture definition is stored as a set of line-drawing commands in an area of memory

referred to as the refresh display file. To display a specified picture, the system

Computer Graphics

3

cycles through the set of commands in the display file, drawing each component line

in turn. After all the line-drawing commands are processed, the system cycles back to

the first line command in the list.

Random-scan displays are designed to draw all the component lines of a picture 30 to

60 times each second.

Figure: Random Scan

Application of Computer Graphics

Computer Graphics has numerous applications, some of which are listed below:

 Computer graphics user interfaces (GUIs) – A graphic, mouse-oriented

paradigm which allows the user to interact with a computer.

 Business presentation graphics - "A picture is worth a thousand words".

 Cartography - Drawing maps.

 Weather Maps – Real-time mapping, symbolic representations.

 Satellite Imaging - Geodesic images.

 Photo Enhancement - Sharpening blurred photos.

 Medical imaging - MRIs, CAT scans, etc. - Non-invasive internal examination.

Computer Graphics

4

 Engineering drawings - mechanical, electrical, civil, etc. - Replacing the
blueprints of the past.

 Typography - The use of character images in publishing - replacing the hard

type of the past.

 Architecture - Construction plans, exterior sketches - replacing the blueprints

and hand drawings of the past.

 Art - Computers provide a new medium for artists.

 Training - Flight simulators, computer aided instruction, etc.

 Entertainment - Movies and games.

 Simulation and modeling - Replacing physical modeling and enactments

Computer Graphics

5

A line connects two points. It is a basic element in graphics. To draw a line, you need

two points between which you can draw a line. In the following three algorithms, we

refer the one point of line as X0, Y0 and the second point of line as X1, Y1.

DDA Algorithm

Digital Differential Analyzer (DDA) algorithm is the simple line generation algorithm

which is explained step by step here.

Step 1: Get the input of two end points (X0, Y0) and (X1, Y1).

Step 2: Calculate the difference between two end points.

 dx = X1 - X0

 dy = Y1 - Y0

Step 3: Based on the calculated difference in step-2, you need to identify the number

of steps to put pixel. If dx > dy, then you need more steps in x coordinate; otherwise

in y coordinate.

 if (dx > dy)

 Steps = absolute(dx);

 else

 Steps = absolute(dy);

Step 4: Calculate the increment in x coordinate and y coordinate.

 Xincrement = dx / (float) steps;

 Yincrement = dy / (float) steps;

2. LINE GENERATION ALGORITHM

Computer Graphics

6

Step 5: Put the pixel by successfully incrementing x and y coordinates accordingly and

complete the drawing of the line.

for(int v=0; v < Steps; v++)

{

 x = x + Xincrement;

 y = y + Yincrement;

 putpixel(x,y);

}

Bresenham’s Line Generation

The Bresenham algorithm is another incremental scan conversion algorithm. The big

advantage of this algorithm is that, it uses only integer calculations. Moving across the

x axis in unit intervals and at each step choose between two different y coordinates.

For example, as shown in the following illustration, from position (2, 3) you need to

choose between (3, 3) and (3, 4). You would like the point that is closer to the original

line.

At sample position xk+1, the vertical separations from the mathematical line are

labelled as dupper and dlower.

Computer Graphics

7

From the above illustration, the y coordinate on the mathematical line at xk+1 is:

𝑌 = 𝑚(𝑋𝑘 + 1) + 𝑏

So, dupper and dlower are given as follows:

𝑑𝑙𝑜𝑤𝑒𝑟 = 𝑦 − 𝑦𝑘

 = 𝑚(𝑋𝑘 + 1) + 𝑏 − 𝑌𝑘

and

𝑑𝑢𝑝𝑝𝑒𝑟 = (𝑦𝑘 + 1) − 𝑦

 = 𝑌𝑘 + 1 − 𝑚(𝑋𝑘 + 1) − 𝑏

You can use these to make a simple decision about which pixel is closer to the

mathematical line. This simple decision is based on the difference between the two

pixel positions.

𝑑𝑙𝑜𝑤𝑒𝑟 − 𝑑𝑢𝑝𝑝𝑒𝑟 = 2𝑚(𝑥𝑘 + 1) − 2𝑦𝑘 + 2𝑏 − 1

Let us substitute m with dy/dx where dx and dy are the differences between the end-

points.

𝑑𝑥(𝑑𝑙𝑜𝑤𝑒𝑟 − 𝑑𝑢𝑝𝑝𝑒𝑟) = 𝑑𝑥(2
𝑑𝑦

𝑑𝑥
(𝑥𝑘 + 1) − 2𝑦𝑘 + 2𝑏 − 1)

 = 2𝑑𝑦 ∙ 𝑥𝑘 − 2𝑑𝑥 ∙ 𝑦𝑘 + 2𝑑𝑦 + 𝑑𝑥(2𝑏 − 1)

 = 2𝑑𝑦 ∙ 𝑥𝑘 − 2𝑑𝑥 ∙ 𝑦𝑘 + 𝐶

So, a decision parameter pk for the kth step along a line is given by:

𝑝𝑘 = 𝑑𝑥(𝑑𝑙𝑜𝑤𝑒𝑟 − 𝑑𝑢𝑝𝑝𝑒𝑟)

 = 2𝑑𝑦 ∙ 𝑥𝑘 − 2𝑑𝑥 ∙ 𝑦𝑘 + 𝐶

The sign of the decision parameter pk is the same as that of dlower – dupper.

Computer Graphics

8

If pk is negative, then choose the lower pixel, otherwise choose the upper pixel.

Remember, the coordinate changes occur along the x axis in unit steps, so you can do

everything with integer calculations. At step k+1, the decision parameter is given as:

𝑝𝑘+1 = 2𝑑𝑦 ∙ 𝑥𝑘+1 − 2𝑑𝑥 ∙ 𝑦𝑘+1 + 𝐶

Subtracting pk from this we get:

𝑝𝑘+1 − 𝑝𝑘 = 2𝑑𝑦(𝑥𝑘+1 − 𝑥𝑘) − 2𝑑𝑥(𝑦𝑘+1 − 𝑦𝑘)

But, xk+1 is the same as xk+1. So:

𝑝𝑘+1 = 𝑝𝑘 + 2𝑑𝑦 − 2𝑑𝑥(𝑦𝑘+1 − 𝑦𝑘)

Where, yk+1 – yk is either 0 or 1 depending on the sign of pk.

The first decision parameter p0 is evaluated at (x0, y0) is given as:

𝑝0 = 2𝑑𝑦 − 𝑑𝑥

Now, keeping in mind all the above points and calculations, here is the Bresenham

algorithm for slope m < 1:

Step 1: Input the two end-points of line, storing the left end-point in (x0, y0).

Step 2: Plot the point (x0, y0).

Step 3: Calculate the constants dx, dy, 2dy, and (2dy – 2dx) and get the first value

for the decision parameter as:

𝑝0 = 2𝑑𝑦 − 𝑑𝑥

Step 4: At each xk along the line, starting at k = 0, perform the following test:

If pk < 0, the next point to plot is (xk+1, yk) and

𝑝𝑘+1 = 𝑝𝑘 + 2𝑑𝑦Otherwise,

𝑝𝑘+1 = 𝑝𝑘 + 2𝑑𝑦 − 2𝑑𝑥

Step 5: Repeat step 4 (dx – 1) times.

For m > 1, find out whether you need to increment x while incrementing y each time.

After solving, the equation for decision parameter pk will be very similar, just the x

and y in the equation gets interchanged.

Computer Graphics

9

Mid-Point Algorithm

Mid-point algorithm is due to Bresenham which was modified by Pitteway and Van

Aken. Assume that you have already put the point P at (x, y) coordinate and the slope

of the line is 0 ≤ k ≤ 1 as shown in the following illustration.

Now you need to decide whether to put the next point at E or N. This can be chosen

by identifying the intersection point Q closest to the point N or E. If the intersection

point Q is closest to the point N then N is considered as the next point; otherwise E.

Figure: Mid-point Algorithm

To determine that, first calculate the mid-point M(x+1, y + ½). If the intersection point

Q of the line with the vertical line connecting E and N is below M, then take E as the

next point; otherwise take N as the next point.

In order to check this, we need to consider the implicit equation:

F(x,y) = mx + b - y

For positive m at any given X,

 If y is on the line, then F(x, y) = 0

 If y is above the line, then F(x, y) < 0

 If y is below the line, then F(x, y) > 0

Computer Graphics

10

Computer Graphics

11

Drawing a circle on the screen is a little complex than drawing a line. There are two

popular algorithms for generating a circle: Bresenham’s Algorithm and Midpoint

Circle Algorithm. These algorithms are based on the idea of determining the

subsequent points required to draw the circle. Let us discuss the algorithms in detail:

The equation of circle is X2 + Y2 = r2, where r is radius.

Bresenham’s Algorithm

We cannot display a continuous arc on the raster display. Instead, we have to choose

the nearest pixel position to complete the arc.

From the following illustration, you can see that we have put the pixel at (X, Y) location

and now need to decide where to put the next pixel: at N (X+1, Y) or at S (X+1, Y-1).

(a,b)

(b,a)

(a,-b)

(b,-a)

(-a,-b)

(-a,b)

(-b,-a)

(-b,a)

3. CIRCLE GENERATION ALGORITHM

Computer Graphics

12

This can be decided by the decision parameter d.

 If d <= 0, then N(X+1, Y) is to be chosen as next pixel.

 If d > 0, then S(X+1, Y-1) is to be chosen as the next pixel.

Algorithm

Step 1: Get the coordinates of the center of the circle and radius, and store them in

x, y, and R respectively. Set P=0 and Q=R.

Step 2: Set decision parameter D = 3 – 2R.

Step 3: Repeat through step-8 while X < Y.

Step 4: Call Draw Circle (X, Y, P, Q).

Step 5: Increment the value of P.

Step 6: If D < 0 then D = D + 4x + 6.

Step 7: Else Set Y = Y + 1, D = D + 4(X-Y) + 10.

Step 8: Call Draw Circle (X, Y, P, Q).

Draw Circle Method(X, Y, P, Q).

Call Putpixel (X + P, Y + Q).

Call Putpixel (X - P, Y + Q).

Call Putpixel (X + P, Y - Q).

Call Putpixel (X - P, Y - Q).

Call Putpixel (X + Q, Y + X).

Computer Graphics

13

Call Putpixel (X - Q, Y + X).

Call Putpixel (X + Q, Y - X).

Call Putpixel (X - Q, Y - X).

Mid Point Algorithm

Step 1: Input radius r and circle center (xc, yc) and obtain the first point on the

circumference of the circle centered on the origin as

(x0, y0) = (0, r)

Step 2: Calculate the initial value of decision parameter as

P0 = 5/4 – r (See the following description for simplification of this equation.)

f(x, y) = x2 + y2 - r2 = 0

f(xi - 1/2 + e, yi + 1)

 = (xi - 1/2 + e)2 + (yi + 1)2 - r2

 = (xi- 1/2)2 + (yi + 1)2 - r2 + 2(xi - 1/2)e + e2

 = f(xi - 1/2, yi + 1) + 2(xi - 1/2)e + e2 = 0

Computer Graphics

14

Let di = f(xi - 1/2, yi + 1) = -2(xi - 1/2)e - e2

Thus,

If e < 0 then di > 0 so choose point S = (xi - 1, yi + 1).

di+1 = f(xi – 1 - 1/2, yi + 1 + 1) = ((xi - 1/2) - 1)2 + ((yi + 1) + 1)2 - r2

 = di - 2(xi - 1) + 2(yi + 1) + 1

 = di + 2(yi+1 - xi+1) + 1

If e >= 0 then di <= 0 so choose point T = (xi, yi + 1)

 di+1 = f(xi - 1/2, yi + 1 + 1)

 = di + 2yi+1 + 1

The initial value of di is

 d0 = f(r - 1/2, 0 + 1) = (r - 1/2)2 + 12 - r2

 = 5/4 - r {1 - r can be used if r is an integer}

When point S = (xi - 1, yi + 1) is chosen, then

Computer Graphics

15

 di+1 = di + 2xi+1 + 2yi+1 + 1

When point T = (xi, yi + 1) is chosen then

 di+1 = di + 2yi+1 + 1

Step 3: At each XK position starting at K=0, perform the following test:

 If PK < 0 then next point on circle (0,0) is (XK+1,YK) and

 PK+1 = PK + 2XK+1 + 1

 Else

 PK+1 = PK + 2XK+1 + 1 – 2YK+1

Where, 2XK+1 = 2XK+2 and 2YK+1 = 2YK-2.

Step 4: Determine the symmetry points in other seven octants.

Step 5: Move each calculate pixel position (X, Y) onto the circular path centered on

(XC, YC) and plot the coordinate values.

X = X + XC, Y = Y + YC

Step 6: Repeat step-3 through 5 until X >= Y.

Computer Graphics

16

Polygon is an ordered list of vertices as shown in the following figure. For filling

polygons with particular colors, you need to determine the pixels falling on the border

of the polygon and those which fall inside the polygon. In this chapter, we will see how

we can fill polygons using different techniques.

Figure: A Polygon

Scan Line Algorithm

This algorithm works by intersecting scanline with polygon edges and fills the polygon

between pairs of intersections. The following steps depict how this algorithm works.

Step 1: Find out the Ymin and Ymax from the given polygon.

Step 2: ScanLine intersects with each edge of the polygon from Ymin to Ymax. Name

each intersection point of the polygon. As per the figure shown above, they are named

as p0, p1, p2, p3.

4. POLYGON FILLING

ScanLine

Computer Graphics

17

Step 3: Sort the intersection point in the increasing order of X coordinate i.e. (p0, p1),

(p1, p2), and (p2, p3).

Step 4: Fill all those pair of coordinates that are inside polygons and ignore the

alternate pairs.

Flood Fill Algorithm

Sometimes we come across an object where we want to fill the area and its boundary

with different colors. We can paint such objects with a specified interior color instead

of searching for particular boundary color as in boundary filling algorithm.

Instead of relying on the boundary of the object, it relies on the fill color. In other

words, it replaces the interior color of the object with the fill color. When no more pixels

of the original interior color exist, the algorithm is completed.

Once again, this algorithm relies on the Four-connect or Eight-connect method of filling

in the pixels. But instead of looking for the boundary color, it is looking for all adjacent

pixels that are a part of the interior.

Computer Graphics

18

Boundary Fill Algorithm

The boundary fill algorithm works as its name. This algorithm picks a point inside an

object and starts to fill until it hits the boundary of the object. The color of the boundary

and the color that we fill should be different for this algorithm to work.

In this algorithm, we assume that color of the boundary is same for the entire object.

The boundary fill algorithm can be implemented by 4-connetected pixels or 8-

connected pixels.

4-Connected Polygon

In this technique 4-connected pixels are used as shown in the figure. We are putting

the pixels above, below, to the right, and to the left side of the current pixels and this

process will continue until we find a boundary with different color.

Algorithm

Step 1: Initialize the value of seed point (seedx, seedy), fcolor and dcol.

Step 2: Define the boundary values of the polygon.

Step 3: Check if the current seed point is of default color, then repeat the steps 4 and

5 till the boundary pixels reached.

If getpixel(x, y) = dcol then repeat step 4 and 5

Step 4: Change the default color with the fill color at the seed point.

setPixel(seedx, seedy, fcol)

Computer Graphics

19

Step 5: Recursively follow the procedure with four neighborhood points.

FloodFill (seedx – 1, seedy, fcol, dcol)

FloodFill (seedx + 1, seedy, fcol, dcol)

FloodFill (seedx, seedy - 1, fcol, dcol)

 FloodFill (seedx – 1, seedy + 1, fcol, dcol)

Step 6: Exit

There is a problem with this technique. Consider the case as shown below where we

tried to fill the entire region. Here, the image is filled only partially. In such cases, 4-

connected pixels technique cannot be used.

8-Connected Polygon

In this technique, 8-connected pixels are used as shown in the figure. We are putting

pixels above, below, right and left side of the current pixels as we were doing in 4-

connected technique.

In addition to this, we are also putting pixels in diagonals so that entire area of the

current pixel is covered. This process will continue until we find a boundary with

different color.

Computer Graphics

20

Algorithm
Step 1: Initialize the value of seed point (seedx, seedy), fcolor and dcol.

Step 2: Define the boundary values of the polygon.

Step 3: Check if the current seed point is of default color then repeat the steps 4 and

5 till the boundary pixels reached

If getpixel(x,y) = dcol then repeat step 4 and 5

Step 4: Change the default color with the fill color at the seed point.

setPixel(seedx, seedy, fcol)

Step 5: Recursively follow the procedure with four neighbourhood points.

FloodFill (seedx – 1, seedy, fcol, dcol)

FloodFill (seedx + 1, seedy, fcol, dcol)

FloodFill (seedx, seedy - 1, fcol, dcol)

FloodFill (seedx, seedy + 1, fcol, dcol)

 FloodFill (seedx – 1, seedy + 1, fcol, dcol)

 FloodFill (seedx + 1, seedy + 1, fcol, dcol)

 FloodFill (seedx + 1, seedy - 1, fcol, dcol)

Computer Graphics

21

 FloodFill (seedx – 1, seedy - 1, fcol, dcol)

Step 6: Exit

The 4-connected pixel technique failed to fill the area as marked in the following figure

which won’t happen with the 8-connected technique.

Inside-outside Test

This method is also known as counting number method. While filling an object, we

often need to identify whether particular point is inside the object or outside it. There

are two methods by which we can identify whether particular point is inside an object

or outside.

 Odd-Even Rule

 Nonzero winding number rule

Odd-Even Rule

In this technique, we will count the edge crossing along the line from any point (x,y)

to infinity. If the number of interactions is odd, then the point (x,y) is an interior point;

and if the number of interactions is even, then the point (x,y) is an exterior point. The

following example depicts this concept.

Computer Graphics

22

From the above figure, we can see that from the point (x,y), the number of interactions

point on the left side is 5 and on the right side is 3. From both ends, the number of

interaction points is odd, so the point is considered within the object.

Nonzero Winding Number Rule
This method is also used with the simple polygons to test the given point is interior or

not. It can be simply understood with the help of a pin and a rubber band. Fix up the

pin on one of the edge of the polygon and tie-up the rubber band in it and then stretch

the rubber band along the edges of the polygon.

When all the edges of the polygon are covered by the rubber band, check out the pin

which has been fixed up at the point to be test. If we find at least one wind at the point

consider it within the polygon, else we can say that the point is not inside the polygon.

In another alternative method, give directions to all the edges of the polygon. Draw a

scan line from the point to be test towards the left most of X direction.

(x, y)

Computer Graphics

23

 Give the value 1 to all the edges which are going to upward direction and all

other -1 as direction values.

 Check the edge direction values from which the scan line is passing and sum up

them.

 If the total sum of this direction value is non-zero, then this point to be tested

is an interior point, otherwise it is an exterior point.

 In the above figure, we sum up the direction values from which the scan line is

passing then the total is 1 – 1 + 1 = 1; which is non-zero. So the point is said

to be an interior point.

Computer Graphics

24

The primary use of clipping in computer graphics is to remove objects, lines, or line

segments that are outside the viewing pane. The viewing transformation is insensitive

to the position of points relative to the viewing volume – especially those points behind

the viewer – and it is necessary to remove these points before generating the view.

Point Clipping

Clipping a point from a given window is very easy. Consider the following figure, where

the rectangle indicates the window. Point clipping tells us whether the given point (X,

Y) is within the given window or not; and decides whether we will use the minimum

and maximum coordinates of the window.

The X-coordinate of the given point is inside the window, if X lies in between Wx1 ≤ X

≤ Wx2. Same way, Y coordinate of the given point is inside the window, if Y lies in

between Wy1 ≤ Y ≤ Wy2.

Line Clipping

The concept of line clipping is same as point clipping. In line clipping, we will cut the

portion of line which is outside of window and keep only the portion that is inside the

window.

5. VIEWING AND CLIPPING

Computer Graphics

25

Cohen-Sutherland Line Clippings

This algorithm uses the clipping window as shown in the following figure. The minimum

coordinate for the clipping region is (XWmin, YWmin) and the maximum coordinate for

the clipping region is (XWmax, YWmax).

We will use 4-bits to divide the entire region. These 4 bits represent the Top, Bottom,

Right, and Left of the region as shown in the following figure. Here, the TOP and LEFT

bit is set to 1 because it is the TOP-LEFT corner.

Computer Graphics

26

There are 3 possibilities for the line:

1. Line can be completely inside the window (This line should be accepted).

2. Line can be completely outside of the window (This line will be completely

removed from the region).

3. Line can be partially inside the window (We will find intersection point and draw

only that portion of line that is inside region).

Algorithm
Step 1: Assign a region code for each endpoints.

Step 2: If both endpoints have a region code 0000 then accept this line.

Step 3: Else, perform the logical AND operation for both region codes.

Step 3.1: If the result is not 0000, then reject the line.

Step 3.2: Else you need clipping.

Step 3.2.1: Choose an endpoint of the line that is outside the window.

Step 3.2.2: Find the intersection point at the window boundary (base on region

code).

Step 3.2.3: Replace endpoint with the intersection point and update the region

code.

Step 3.2.4: Repeat step 2 until we find a clipped line either trivially accepted or

trivially rejected.

Step-4: Repeat step 1 for other lines.

Computer Graphics

27

Cyrus-Beck Line Clipping Algorithm

This algorithm is more efficient than Cohen-Sutherland algorithm. It employs

parametric line representation and simple dot products.

Parametric equation of line is:

P0P1:P(t) = P0 + t(P1 - P0)

Let Ni be the outward normal edge Ei. Now pick any arbitrary point PEi on edge Ei then

the dot product Ni∙[P(t) – PEi] determines whether the point P(t) is “inside the clip edge”

or “outside” the clip edge or “on” the clip edge.

The point P(t) is inside if Ni∙[P(t) – PEi] < 0

The point P(t) is outside if Ni∙[P(t) – PEi] > 0

The point P(t) is on the edge if Ni∙[P(t) – PEi] = 0 (Intersection point)

Ni∙[P(t) – PEi] = 0

Ni∙[P0 + t(P1 - P0) – PEi] = 0 (Replacing P(t) with P0 + t(P1 - P0))

Ni∙[P0 – PEi] + Ni∙t[P1 - P0] = 0

Ni∙[P0 – PEi] + Ni∙tD = 0 (substituting D for [P1 - P0])

Ni∙[P0 – PEi] = - Ni ∙ tD

Computer Graphics

28

The equation for t becomes,

t =
N𝑖 ∙ [P0 – PEi]

−N𝑖 ∙ D

It is valid for the following conditions:

1. Ni ≠ 0 (error cannot happen)

2. D ≠ 0 (P1 ≠ P0)

3. Ni∙D ≠ 0 (P0P1 not parallel to Ei)

Polygon Clipping (Sutherland Hodgman Algorithm)

A polygon can also be clipped by specifying the clipping window. Sutherland Hodgeman

polygon clipping algorithm is used for polygon clipping. In this algorithm, all the

vertices of the polygon are clipped against each edge of the clipping window.

First the polygon is clipped against the left edge of the polygon window to get new

vertices of the polygon. These new vertices are used to clip the polygon against right

edge, top edge, bottom edge, of the clipping window as shown in the following figure.

Figure: Polygon before Filling

While processing an edge of a polygon with clipping window, an intersection point is

found if edge is not completely inside clipping window and the a partial edge from the

intersection point to the outside edge is clipped. The following figures show left, right,

top and bottom edge clippings:

Computer Graphics

29

Figure: Clipping Left Edge Figure: Clipping Right Edge

Figure: Clipping Top Edge Figure: Clipping Bottom Edge

Text Clipping

Various techniques are used to provide text clipping in a computer graphics. It depends

on the methods used to generate characters and the requirements of a particular

application. There are three methods for text clipping which are listed below:

1. All or none string clipping

2. All or none character clipping

3. Text clipping

Computer Graphics

30

The following figure shows all or none string clipping:

In all or none string clipping method, either we keep the entire string or we reject

entire string based on the clipping window. As shown in the above figure, STRING2 is

entirely inside the clipping window so we keep it and STRING1 being only partially

inside the window, we reject.

The following figure shows all or none character clipping:

This clipping method is based on characters rather than entire string. In this method if

the string is entirely inside the clipping window, then we keep it. If it is partially outside

the window, then:

 You reject only the portion of the string being outside

 If the character is on the boundary of the clipping window, then we discard that

entire character and keep the rest string.

Computer Graphics

31

The following figure shows text clipping:

This clipping method is based on characters rather than the entire string. In this

method if the string is entirely inside the clipping window, then we keep it. If it is

partially outside the window, then

 You reject only the portion of string being outside.

 If the character is on the boundary of the clipping window, then we discard only

that portion of character that is outside of the clipping window.

Bitmap Graphics

A bitmap is a collection of pixels that describes an image. It is a type of computer

graphics that the computer uses to store and display pictures. In this type of graphics,

images are stored bit by bit and hence it is named Bit-map graphics. For better

understanding let us consider the following example where we draw a smiley face using

bit-map graphics.

Figure: Original Smiley face

Computer Graphics

32

Now we will see how this smiley face is stored bit by bit in computer graphics.

Figure: Bitmap storage of smiley face

By observing the original smiley face closely, we can see that there are two blue lines

which are represented as B1, B2 and E1, E2 in the above figure.

In the same way, the smiley is represented using the combination bits of A4, B5, C6,

D6, E5, and F4 respectively.

The main disadvantages of bitmap graphics are:

 We cannot resize the bitmap image. If you try to resize, the pixels get blurred.

 Colored bitmaps can be very large.

Computer Graphics

33

Transformation means changing some graphics into something else by applying rules.

We can have various types of transformations such as translation, scaling up or down,

rotation, shearing, etc. When a transformation takes place on a 2D plane, it is called

2D transformation.

Transformations play an important role in computer graphics to reposition the graphics

on the screen and change their size or orientation.

Homogenous Coordinates

To perform a sequence of transformation such as translation followed by rotation and

scaling, we need to follow a sequential process:

1. Translate the coordinates,

2. Rotate the translated coordinates, and then

3. Scale the rotated coordinates to complete the composite transformation.

To shorten this process, we have to use 3×3 transformation matrix instead of 2×2

transformation matrix. To convert a 2×2 matrix to 3×3 matrix, we have to add an

extra dummy coordinate W.

In this way, we can represent the point by 3 numbers instead of 2 numbers, which is

called Homogenous Coordinate system. In this system, we can represent all the

transformation equations in matrix multiplication. Any Cartesian point P(X, Y) can be

converted to homogenous coordinates by P’ (Xh, Yh, h).

Translation

A translation moves an object to a different position on the screen. You can translate

a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y)

to get the new coordinate (X’, Y’).

6. 2D TRANSFORMATION

Computer Graphics

34

From the above figure, you can write that:

X’ = X + tx

Y’ = Y + ty

The pair (tx, ty) is called the translation vector or shift vector. The above equations

can also be represented using the column vectors.

𝑃 = [
𝑋
𝑌
] 𝑃′ = [

𝑋′

𝑌′
] 𝑇 = [

𝑡𝑥

𝑡𝑦
]

We can write it as:

P’ = P + T

Rotation

In rotation, we rotate the object at particular angle θ (theta) from its origin. From the

following figure, we can see that the point P(X, Y) is located at angle Φ from the

horizontal X coordinate with distance r from the origin.

Let us suppose you want to rotate it at the angle θ. After rotating it to a new location,

you will get a new point P’ (X’, Y’).

Computer Graphics

35

Using standard trigonometric the original coordinate of point P(X, Y) can be

represented as:

X = r cos Φ …….. (1)

Y = r sin Φ ……… (2)

Same way we can represent the point P’ (X’, Y’) as:

X’ = r cos (Φ + θ) = r cos Φ cos θ – r sin Φ sin θ …… (3)

Y’ = r sin (Φ + θ) = r cos Φ sin θ + r sin Φ cos θ …… (4)

Substituting equation (1) & (2) in (3) & (4) respectively, we will get

 X’ = X cos θ – Y sin θ

 Y’ = X sin θ + Y cos θ

Representing the above equation in matrix form,

[𝑋′ 𝑌′] = [𝑋 𝑌] [
cos θ

− sinθ
 sin θ
 cos θ

]

OR

P’ = P ∙ R

Where R is the rotation matrix

𝑅 = [
cos θ

− sin θ
 sin θ
 cos θ

]

The rotation angle can be positive and negative.

Computer Graphics

36

For positive rotation angle, we can use the above rotation matrix. However, for

negative angle rotation, the matrix will change as shown below:

𝑅 = [
cos (−θ)
−sin(−θ)

 sin(−θ)
 cos(−θ)

]

 = [
cos θ
sin θ

 − sin θ
 cos θ

] (∵ cos(−θ) = cos θ and sin(−θ) = −sin θ)

Scaling

To change the size of an object, scaling transformation is used. In the scaling process,

you either expand or compress the dimensions of the object. Scaling can be achieved

by multiplying the original coordinates of the object with the scaling factor to get the

desired result.

Let us assume that the original coordinates are (X, Y), the scaling factors are (SX, SY),

and the produced coordinates are (X’, Y’). This can be mathematically represented as

shown below:

X’ = X ∙ SX and Y’ = Y ∙ SY

The scaling factor SX, SY scales the object in X and Y direction respectively. The above

equations can also be represented in matrix form as below:

[𝑋
′

𝑌′
] = [

𝑋
𝑌
] [

𝑆𝑥 0
0 𝑆𝑦

]

OR

P’ = P ∙ S

Where S is the scaling matrix. The scaling process is shown in the following figure.

Figure: Before scaling process

Computer Graphics

37

Figure: After Scaling Process

If we provide values less than 1 to the scaling factor S, then we can reduce the size of

the object. If we provide values greater than 1, then we can increase the size of the

object.

Reflection

Reflection is the mirror image of original object. In other words, we can say that it is

a rotation operation with 180˚. In reflection transformation, the size of the object does

not change.

The following figures show reflections with respect to X and Y axes, and about the

origin respectively.

Computer Graphics

38

Figure: Reflection about line y=x

Shear

A transformation that slants the shape of an object is called the shear transformation.

There are two shear transformations X-Shear and Y-Shear. One shifts X coordinates

values and other shifts Y coordinate values. However, in both the cases, only one

coordinate changes its coordinates and other preserves its values. Shearing is also

termed as Skewing.

X-Shear
The X-Shear preserves the Y coordinate and changes are made to X coordinates, which

causes the vertical lines to tilt right or left as shown in below figure.

Computer Graphics

39

The transformation matrix for X-Shear can be represented as:

𝑋𝑆ℎ = [
1 0 0

Sh𝑥 1 0
0 0 1

]

X’ = X + Shx ∙ Y

Y’ = Y

Y-Shear
The Y-Shear preserves the X coordinates and changes the Y coordinates which causes

the horizontal lines to transform into lines which slopes up or down as shown in the

following figure.

The Y-Shear can be represented in matrix from as:

𝑌𝑆ℎ = [
1 Sh𝑦 0

0 1 0
0 0 1

]

Y’ = Y + Shy ∙ X

X’ = X

Composite Transformation

If a transformation of the plane T1 is followed by a second plane transformation T2,

then the result itself may be represented by a single transformation T which is the

composition of T1 and T2 taken in that order. This is written as T = T1∙T2.

Composite transformation can be achieved by concatenation of transformation

matrices to obtain a combined transformation matrix.

Computer Graphics

40

A combined matrix:

[T][X] = [X] [T1] [T2] [T3] [T4] …. [Tn]

Where [Ti] is any combination of

 Translation

 Scaling

 Shearing

 Rotation

 Reflection

The change in the order of transformation would lead to different results, as in general

matrix multiplication is not cumulative, that is [A] ∙ [B] ≠ [B] ∙ [A] and the order of

multiplication. The basic purpose of composing transformations is to gain efficiency by

applying a single composed transformation to a point, rather than applying a series of

transformation, one after another.

For example, to rotate an object about an arbitrary point (Xp, Yp), we have to carry

out three steps:

1. Translate point (Xp, Yp) to the origin.

2. Rotate it about the origin.

3. Finally, translate the center of rotation back where it belonged.

Computer Graphics

41

In the 2D system, we use only two coordinates X and Y but in 3D, an extra coordinate

Z is added. 3D graphics techniques and their application are fundamental to the

entertainment, games, and computer-aided design industries. It is a continuing area

of research in scientific visualization.

Furthermore, 3D graphics components are now a part of almost every personal

computer and, although traditionally intended for graphics-intensive software such as

games, they are increasingly being used by other applications.

Parallel Projection

Parallel projection discards z-coordinate and parallel lines from each vertex on the

object are extended until they intersect the view plane. In parallel projection, we

specify a direction of projection instead of center of projection.

In parallel projection, the distance from the center of projection to project plane is

infinite. In this type of projection, we connect the projected vertices by line segments

which correspond to connections on the original object.

Parallel projections are less realistic, but they are good for exact measurements. In

this type of projections, parallel lines remain parallel and angles are not preserved.

Various types of parallel projections are shown in the following hierarchy.

7. 3D GRAPHICS

Computer Graphics

42

Figure: Types of Parallel Projection

Orthographic Projection

In orthographic projection the direction of projection is normal to the projection of the

plane. There are three types of orthographic projections:

 Front Projection

 Top Projection

 Side Projection

Parallel
Projection

Orthographic

Top

Front

Side

Axonometric

Oblique

Cavalier

Cabinet

Computer Graphics

43

Oblique Projection

In orthographic projection, the direction of projection is not normal to the projection

of plane. In oblique projection, we can view the object better than orthographic

projection.

There are two types of oblique projections: Cavalier and Cabinet. The Cavalier

projection makes 45˚ angle with the projection plane. The projection of a line

perpendicular to the view plane has the same length as the line itself in Cavalier

projection. In a cavalier projection, the foreshortening factors for all three principal

directions are equal.

The Cabinet projection makes 63.4˚ angle with the projection plane. In Cabinet

projection, lines perpendicular to the viewing surface are projected at ½ their actual

length. Both the projections are shown in the following figure:

Figure: Cavalier & Cabinet Projection

Isometric Projections

Orthographic projections that show more than one side of an object are called

axonometric orthographic projections. The most common axonometric projection

is an isometric projection where the projection plane intersects each coordinate axis

in the model coordinate system at an equal distance. In this projection parallelism of

lines are preserved but angles are not preserved. The following figure shows isometric

projection:

Computer Graphics

44

Figure: Isometric Projection

Perspective Projection

In perspective projection, the distance from the center of projection to project plane is

finite and the size of the object varies inversely with distance which looks more

realistic.

The distance and angles are not preserved and parallel lines do not remain parallel.

Instead, they all converge at a single point called center of projection or projection

reference point. There are 3 types of perspective projections which are shown in the

following chart.

 One point perspective projection is simple to draw.

 Two point perspective projection gives better impression of depth.

 Three point perspective projection is most difficult to draw.

Computer Graphics

45

Figure: Types of Perspective Projections

The following figure shows all the three types of perspective projection:

Figure: 1-point, 2-point, 3-point perspective projection

Translation

In 3D translation, we transfer the Z coordinate along with the X and Y coordinates. The

process for translation in 3D is similar to 2D translation. A translation moves an object

into a different position on the screen.

Pe
rp

ec
ti

ve
 P

ro
je

ct
io

n

One Point

Two Point

Three Point

Computer Graphics

46

The following figure shows the effect of translation:

Figure: 3D Translation

A point can be translated in 3D by adding translation coordinate (tx, ty, tz) to the

original coordinate (X, Y, Z) to get the new coordinate (X’, Y’, Z’).

𝑇 = [

1 0 0 0
0 1 0 0
0 0 1 0
t𝑥 t𝑦 t𝑧 1

]

P’ = P∙T

[𝑋′ 𝑌′ 𝑍′ 1] = [𝑋 𝑌 𝑍 1] [

1 0 0 0
0 1 0 0
0 0 1 0
t𝑥 t𝑦 t𝑧 1

]

 = [𝑋 + t𝑥 𝑌 + t𝑦 𝑍 + t𝑧 1]

Rotation

3D rotation is not same as 2D rotation. In 3D rotation, we have to specify the angle of

rotation along with the axis of rotation. We can perform 3D rotation about X, Y, and Z

axes. They are represented in the matrix form as below:

Computer Graphics

47

𝑅𝑥(𝜃) = [

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

] 𝑅𝑦(𝜃) = [

cos 𝜃 0 sin 𝜃 0
0 1 0 0

−sin 𝜃 0 cos 𝜃 0
0 0 0 1

] 𝑅𝑧(𝜃) = [

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

]

The following figure explains the rotation about various axes:

Rotation about x-axis

 Rotation about y-axis

 Rotation about z-axis

Figure: 3D Rotation

Scaling

You can change the size of an object using scaling transformation. In the scaling

process, you either expand or compress the dimensions of the object. Scaling can be

achieved by multiplying the original coordinates of the object with the scaling factor to

get the desired result. The following figure shows the effect of 3D scaling:

Computer Graphics

48

Figure: 3D Scaling

In 3D scaling operation, three coordinates are used. Let us assume that the original

coordinates are (X, Y, Z), scaling factors are (SX, SY, Sz) respectively, and the

produced coordinates are (X’, Y’, Z’). This can be mathematically represented as shown

below:

𝑆 = [

𝑆𝑥 0 0 0
0 𝑆𝑦 0 0

0 0 1 0
0 0 0 1

]

P’ = P∙S

[𝑋′ 𝑌′ 𝑍′ 1] = [𝑋 𝑌 𝑍 1] [

𝑆𝑥 0 0 0
0 𝑆𝑦 0 0

0 0 1 0
0 0 0 1

]

 = [𝑋 ∙ 𝑆𝑥 𝑌 ∙ 𝑆𝑦 𝑍 ∙ 𝑆𝑧 1]

Shear

A transformation that slants the shape of an object is called the shear

transformation. Like in 2D shear, we can shear an object along the X-axis, Y-axis, or

Z-axis in 3D.

Computer Graphics

49

As shown in the above figure, there is a coordinate P. You can shear it to get a new

coordinate P’, which can be represented in 3D matrix form as below:

𝑆ℎ =

[

1 𝑆ℎ𝑥
𝑦

𝑆ℎ𝑥
𝑧 0

𝑆ℎ𝑦
𝑥 1 𝑆ℎ𝑦

𝑧 0

𝑆ℎ𝑧
𝑥 𝑆ℎ𝑧

𝑦
1 0

0 0 0 1]

P’ = P ∙ Sh

X’ = X + 𝑆ℎ𝑥
𝑦
 Y + 𝑆ℎ𝑥

𝑧 Z

Y’ = 𝑆ℎ𝑦
𝑥 X + Y + 𝑆ℎ𝑦

𝑧 Z

Z’ = 𝑆ℎ𝑧
𝑥 X + 𝑆ℎ𝑧

𝑦
 Y + Z

Transformation Matrices

Transformation matrix is a basic tool for transformation. A matrix with n x m

dimensions is multiplied with the coordinate of objects. Usually 3 x 3 or 4 x 4 matrices

are used for transformation. For example, consider the following matrix for various

operation.

𝑇 = [

1 0 0 0
0 1 0 0
0 0 1 0
t𝑥 t𝑦 t𝑧 1

]

𝑆 = [

𝑆𝑥 0 0 0
0 𝑆𝑦 0 0

0 0 1 0
0 0 0 1

]

𝑆ℎ =

[

1 𝑆ℎ𝑥
𝑦

𝑆ℎ𝑥
𝑧 0

𝑆ℎ𝑦
𝑥 1 𝑆ℎ𝑦

𝑧 0

𝑆ℎ𝑧
𝑥 𝑆ℎ𝑧

𝑦
1 0

0 0 0 1]

Translation Matrix Scaling Matrix Shear Matrix

Computer Graphics

50

𝑅𝑥(𝜃) = [

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

]

𝑅𝑦(𝜃) = [

cos 𝜃 0 sin 𝜃 0
0 1 0 0

−sin 𝜃 0 cos 𝜃 0
0 0 0 1

]

𝑅𝑧(𝜃) = [

cos 𝜃 − sin 𝜃 0 0
sin 𝜃 cos 𝜃 0 0

0 0 1 0
0 0 0 1

]

 Rotation Matrix

Computer Graphics

51

In computer graphics, we often need to draw different types of objects onto the screen.

Objects are not flat all the time and we need to draw curves many times to draw an

object.

Types of Curves

A curve is an infinitely large set of points. Each point has two neighbors except

endpoints. Curves can be broadly classified into three categories: explicit, implicit,

and parametric curves.

Implicit Curves

Implicit curve representations define the set of points on a curve by employing a

procedure that can test to see if a point in on the curve. Usually, an implicit curve is

defined by an implicit function of the form:

f(x, y) = 0

It can represent multivalued curves (multiple y values for an x value). A common

example is the circle, whose implicit representation is

x2 + y2 − R2 = 0

Explicit Curves

A mathematical function y = f(x) can be plotted as a curve. Such a function is the

explicit representation of the curve. The explicit representation is not general, since it

cannot represent vertical lines and is also single-valued. For each value of x, only a

single value of y is normally computed by the function.

Parametric Curves

Curves having parametric form are called parametric curves. The explicit and implicit

curve representations can be used only when the function is known. In practice the

parametric curves are used. A two-dimensional parametric curve has the following

form:

P(t) = f(t), g(t) or P(t) = x(t), y(t)

The functions f and g become the (x, y) coordinates of any point on the curve, and the

points are obtained when the parameter t is varied over a certain interval [a, b],

normally [0, 1].

8. CURVES

Computer Graphics

52

Bezier Curves

Bezier curve is discovered by the French engineer Pierre Bézier. These curves can be

generated under the control of other points. Approximate tangents by using control

points are used to generate curve. The Bezier curve can be represented mathematically

as:

∑ 𝑃𝑖

𝑛

𝑘=0

𝐵𝑖
𝑛(𝑡)

Where 𝑃𝑖 is the set of points and 𝐵𝑖
𝑛(𝑡) represents the Bernstein polynomials which

are given by:

𝐵𝑖
𝑛(𝑡) = (

𝑛

𝑖
) (1 − 𝑡)𝑛−𝑖𝑡𝑖

Where n is the polynomial degree, i is the index, and t is the variable.

The simplest Bézier curve is the straight line from the point P0 to P1. A quadratic Bezier

curve is determined by three control points. A cubic Bezier curve is determined by four

control points.

Properties of Bezier Curves

Bezier curves have the following properties:

 They generally follow the shape of the control polygon, which consists of the

segments joining the control points.

 They always pass through the first and last control points.

 They are contained in the convex hull of their defining control points.

 The degree of the polynomial defining the curve segment is one less that the

number of defining polygon point. Therefore, for 4 control points, the degree of

the polynomial is 3, i.e. cubic polynomial.

http://rocbo.chez.tiscali.fr/Max/culture/bezier/bezier.htm

Computer Graphics

53

 A Bezier curve generally follows the shape of the defining polygon.

 The direction of the tangent vector at the end points is same as that of the vector

determined by first and last segments.

 The convex hull property for a Bezier curve ensures that the polynomial

smoothly follows the control points.

 No straight line intersects a Bezier curve more times than it intersects its control
polygon.

 They are invariant under an affine transformation.

 Bezier curves exhibit global control means moving a control point alters the
shape of the whole curve.

 A given Bezier curve can be subdivided at a point t=t0 into two Bezier segments

which join together at the point corresponding to the parameter value t=t0.

B-Spline Curves

The Bezier-curve produced by the Bernstein basis function has limited flexibility.

 First, the number of specified polygon vertices fixes the order of the resulting
polynomial which defines the curve.

 The second limiting characteristic is that the value of the blending function is

nonzero for all parameter values over the entire curve.

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis

is non-global.

A B-spline curve is defined as a linear combination of control points Pi and B-spline

basis function Ni, k (t) given by

C(t) = ∑ 𝑃𝑖
𝑛
𝑖=0 𝑁𝑖,𝑘(𝑡), n ≥ k - 1, t [tk-1 , tn+1]

Where,

 {𝑃𝑖: i=0, 1, 2….n} are the control points

 k is the order of the polynomial segments of the B-spline curve. Order k means
that the curve is made up of piecewise polynomial segments of degree k − 1,

 the Ni,k(t) are the “normalized B-spline blending functions”. They are described

by the order k and by a non-decreasing sequence of real numbers normally called
the “knot sequence”.

{ti : i = 0, ..., n + k}

Computer Graphics

54

The Ni, k functions are described as follows:

𝑁𝑖,1(𝑡) = {
1, 𝑖𝑓 𝑢 [𝑡𝑖 , 𝑡𝑖+1)

0, Otherwise

and if k > 1,

𝑁𝑖,𝑘(𝑡) =
𝑡 − 𝑡𝑖

𝑡𝑖+𝑘−1 − 𝑡𝑖
 𝑁𝑖,𝑘−1(𝑡) +

𝑡𝑖+𝑘 − 𝑡

𝑡𝑖+𝑘 − 𝑡𝑖+1
𝑁𝑖+1,𝑘−1(𝑡)

and

t [tk-1,tn+1)

Properties of B-spline Curve

B-spline curves have the following properties:

 The sum of the B-spline basis functions for any parameter value is 1.

 Each basis function is positive or zero for all parameter values.

 Each basis function has precisely one maximum value, except for k=1.

 The maximum order of the curve is equal to the number of vertices of defining
polygon.

 The degree of B-spline polynomial is independent on the number of vertices of

defining polygon.

 B-spline allows the local control over the curve surface because each vertex

affects the shape of a curve only over a range of parameter values where its
associated basis function is nonzero.

 The curve exhibits the variation diminishing property.

 The curve generally follows the shape of defining polygon.

 Any affine transformation can be applied to the curve by applying it to the

vertices of defining polygon.

 The curve line within the convex hull of its defining polygon.

Computer Graphics

55

Polygon Surfaces

Objects are represented as a collection of surfaces. 3D object representation is divided

into two categories.

 Boundary Representations (B-reps): It describes a 3D object as a set of
surfaces that separates the object interior from the environment.

 Space–partitioning representations: It is used to describe interior

properties, by partitioning the spatial region containing an object into a set of
small, non-overlapping, contiguous solids (usually cubes).

The most commonly used boundary representation for a 3D graphics object is a set of

surface polygons that enclose the object interior. Many graphics system use this

method. Set of polygons are stored for object description. This simplifies and speeds

up the surface rendering and display of object since all surfaces can be described with

linear equations.

The polygon surfaces are common in design and solid-modeling applications, since

their wireframe display can be done quickly to give general indication of surface

structure. Then realistic scenes are produced by interpolating shading patterns across

polygon surface to illuminate.

Polygon Tables

In this method, the surface is specified by the set of vertex coordinates and associated

attributes. As shown in the following figure, there are five vertices, from v1 to v5.

9. SURFACES

Computer Graphics

56

 Each vertex stores x, y, and z coordinate information which is represented in
the table as v1: x1, y1, z1.

 The Edge table is used to store the edge information of polygon. In the following

figure, edge E1 lies between vertex v1 and v2 which is represented in the table
as E1: v1, v2.

 Polygon surface table stores the number of surfaces present in the polygon.
From the following figure, surface S1 is covered by edges E1, E2 and E3 which

can be represented in the polygon surface table as S1: E1, E2, and E3.

Figure: Polygon Table

Computer Graphics

57

Plane Equations

The equation for plane surface can be expressed as:

Ax + By + Cz + D = 0

Where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are

constants describing the spatial properties of the plane. We can obtain the values of A,

B, C, and D by solving a set of three plane equations using the coordinate values for

three non collinear points in the plane. Let us assume that three vertices of the plane

are (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3).

Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You

get the values of A, B, C, and D.

(A/D) x1 + (B/D) y1 + (C/D) z1 = -1

(A/D) x2 + (B/D) y2 + (C/D) z2 = -1

(A/D) x3 + (B/D) y3 + (C/D) z3 = -1

To obtain the above equations in determinant form, apply Cramer’s rule to the above

equations.

𝐴 = [

1 𝑦1 𝑧1

1 𝑦2 𝑧2

1 𝑦3 𝑧3

] B = [

𝑥1 1 𝑧1

𝑥2 1 𝑧2

𝑥3 1 𝑧3

] C = [

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

] D = − [

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

]

For any point (x, y, z) with parameters A, B, C, and D, we can say that –

 Ax + By + Cz + D ≠ 0 means the point is not on the plane.

 Ax + By + Cz + D < 0 means the point is inside the surface.

 Ax + By + Cz + D > 0 means the point is outside the surface.

Polygon Meshes

3D surfaces and solids can be approximated by a set of polygonal and line elements.

Such surfaces are called polygonal meshes. In polygon mesh, each edge is shared

by at most two polygons. The set of polygons or faces, together form the “skin” of the

object.

This method can be used to represent a broad class of solids/surfaces in graphics. A

polygonal mesh can be rendered using hidden surface removal algorithms. The polygon

mesh can be represented by three ways:

 Explicit representation

 Pointers to a vertex list

 Pointers to an edge list

Computer Graphics

58

Figure: Polygon Mesh

Advantages
 It can be used to model almost any object.

 They are easy to represent as a collection of vertices.

 They are easy to transform.

 They are easy to draw on computer screen.

Disadvantages

 Curved surfaces can only be approximately described.

 It is difficult to simulate some type of objects like hair or liquid.

Computer Graphics

59

When we view a picture containing non-transparent objects and surfaces, then we

cannot see those objects from view which are behind from objects closer to eye. We

must remove these hidden surfaces to get a realistic screen image. The identification

and removal of these surfaces is called Hidden-surface problem.

There are two approaches for removing hidden surface problems: Object-Space

method and Image-space method. The Object-space method is implemented in

physical coordinate system and image-space method is implemented in screen

coordinate system.

When we want to display a 3D object on a 2D screen, we need to identify those parts

of a screen that are visible from a chosen viewing position.

Depth Buffer (Z-Buffer) Method

This method is developed by Cutmull. It is an image-space approach. The basic idea is

to test the Z-depth of each surface to determine the closest (visible) surface.

In this method each surface is processed separately one pixel position at a time across

the surface. The depth values for a pixel are compared and the closest (smallest z)

surface determines the color to be displayed in the frame buffer.

It is applied very efficiently on surfaces of polygon. Surfaces can be processed in any

order. To override the closer polygons from the far ones, two buffers named frame

buffer and depth buffer, are used.

Depth buffer is used to store depth values for (x, y) position, as surfaces are

processed (0 ≤ depth ≤ 1).

The frame buffer is used to store the intensity value of color value at each position

(x, y).

The z-coordinates are usually normalized to the range [0, 1]. The 0 value for z-

coordinate indicates back clipping pane and 1 value for z-coordinates indicates front

clipping pane.

10. VISIBLE SURFACE DETECTION

Computer Graphics

60

Algorithm
Step-1: Set the buffer values:

 Depthbuffer (x, y) = 0

 Framebuffer (x, y) = background color

Step-2: Process each polygon (One at a time)

 For each projected (x, y) pixel position of a polygon, calculate depth z.

 If Z > depthbuffer (x, y)

 Compute surface color,

 set depthbuffer (x, y) = z,

 framebuffer (x, y) = surfacecolor (x, y)

Advantages
 It is easy to implement.

 It reduces the speed problem if implemented in hardware.

 It processes one object at a time.

Disadvantages

 It requires large memory.

 It is time consuming process.

Computer Graphics

61

Scan-Line Method

It is an image-space method to identify visible surface. This method has a depth

information for only single scan-line. In order to require one scan-line of depth values,

we must group and process all polygons intersecting a given scan-line at the same

time before processing the next scan-line. Two important tables, edge table and

polygon table, are maintained for this.

The Edge Table: It contains coordinate endpoints of each line in the scene, the inverse

slope of each line, and pointers into the polygon table to connect edges to surfaces.

The Polygon Table: It contains the plane coefficients, surface material properties,

other surface data, and may be pointers to the edge table.

To facilitate the search for surfaces crossing a given scan-line, an active list of edges

is formed. The active list stores only those edges that cross the scan-line in order of

increasing x. Also a flag is set for each surface to indicate whether a position along a

scan-line is either inside or outside the surface.

Pixel positions across each scan-line are processed from left to right. At the left

intersection with a surface, the surface flag is turned on and at the right, the flag is

turned off. You only need to perform depth calculations when multiple surfaces have

their flags turned on at a certain scan-line position.

Area-Subdivision Method

The area-subdivision method takes advantage by locating those view areas that

represent part of a single surface. Divide the total viewing area into smaller and smaller

rectangles until each small area is the projection of part of a single visible surface or

no surface at all.

Continue this process until the subdivisions are easily analyzed as belonging to a single

surface or until they are reduced to the size of a single pixel. An easy way to do this is

Computer Graphics

62

to successively divide the area into four equal parts at each step. There are four

possible relationships that a surface can have with a specified area boundary.

 Surrounding surface: One that completely encloses the area.

 Overlapping surface: One that is partly inside and partly outside the area.

 Inside surface: One that is completely inside the area.

 Outside surface: One that is completely outside the area.

The tests for determining surface visibility within an area can be stated in terms of

these four classifications. No further subdivisions of a specified area are needed if one

of the following conditions is true:

 All surfaces are outside surfaces with respect to the area.

 Only one inside, overlapping or surrounding surface is in the area.

 A surrounding surface obscures all other surfaces within the area boundaries.

Back-Face Detection

A fast and simple object-space method for identifying the back faces of a polyhedron

is based on the "inside-outside" tests. A point (x, y, z) is "inside" a polygon surface

with plane parameters A, B, C, and D if When an inside point is along the line of sight

to the surface, the polygon must be a back face (we are inside that face and cannot

see the front of it from our viewing position).

We can simplify this test by considering the normal vector N to a polygon surface,

which has Cartesian components (A, B, C).

In general, if V is a vector in the viewing direction from the eye (or "camera") position,

then this polygon is a back face if

V.N > 0

Computer Graphics

63

Furthermore, if object descriptions are converted to projection coordinates and your

viewing direction is parallel to the viewing z-axis, then:

V = (0, 0, Vz) and V.N = VZ C

So that we only need to consider the sign of C the component of the normal vector N.

In a right-handed viewing system with viewing direction along the negative ZV axis,

the polygon is a back face if C < 0. Also, we cannot see any face whose normal has z

component C = 0, since your viewing direction is towards that polygon. Thus, in

general, we can label any polygon as a back face if its normal vector has a z component

value:

C <= 0

Similar methods can be used in packages that employ a left-handed viewing system.

In these packages, plane parameters A, B, C and D can be calculated from polygon

vertex coordinates specified in a clockwise direction (unlike the counterclockwise

direction used in a right-handed system).

Also, back faces have normal vectors that point away from the viewing position and

are identified by C >= 0 when the viewing direction is along the positive zv axis. By

examining parameter C for the different planes defining an object, we can immediately

identify all the back faces.

Computer Graphics

64

A-Buffer Method

The A-buffer method is an extension of the depth-buffer method. The A-buffer method

is a visibility detection method developed at Lucas film Studios for the rendering

system Renders Everything You Ever Saw (REYES).

The A-buffer expands on the depth buffer method to allow transparencies. The key

data structure in the A-buffer is the accumulation buffer.

Each position in the A-buffer has two fields:

1) Depth field: It stores a positive or negative real number

2) Intensity field: It stores surface-intensity information or a pointer value

Computer Graphics

65

If depth >= 0, the number stored at that position is the depth of a single surface

overlapping the corresponding pixel area. The intensity field then stores the RGB

components of the surface color at that point and the percent of pixel coverage.

If depth < 0, it indicates multiple-surface contributions to the pixel intensity. The

intensity field then stores a pointer to a linked list of surface data. The surface buffer

in the A-buffer includes:

 RGB intensity components

 Opacity Parameter

 Depth

 Percent of area coverage

 Surface identifier

The algorithm proceeds just like the depth buffer algorithm. The depth and opacity

values are used to determine the final color of a pixel.

Depth Sorting Method

Depth sorting method uses both image space and object-space operations. The depth-

sorting method performs two basic functions:

 First, the surfaces are sorted in order of decreasing depth.

 Second, the surfaces are scan-converted in order, starting with the surface of

greatest depth.

The scan conversion of the polygon surfaces is performed in image space. This method

for solving the hidden-surface problem is often referred to as the painter's algorithm.

The following figure shows the effect of depth sorting:

Computer Graphics

66

Figure: Depth Sorting

The algorithm begins by sorting by depth. For example, the initial “depth” estimate of

a polygon may be taken to be the closest z value of any vertex of the polygon.

Let us take the polygon P at the end of the list. Consider all polygons Q whose z-extents

overlap P’s. Before drawing P, we make the following tests. If any of the following tests

is positive, then we can assume P can be drawn before Q.

1. Do the x-extents not overlap?

2. Do the y-extents not overlap?

3. Is P entirely on the opposite side of Q’s plane from the viewpoint?

4. Is Q entirely on the same side of P’s plane as the viewpoint?

5. Do the projections of the polygons not overlap?

If all the tests fail, then we split either P or Q using the plane of the other. The new

cut polygons are inserting into the depth order and the process continues.

Theoretically, this partitioning could generate O(n2) individual polygons, but in practice,

the number of polygons is much smaller.

Binary Space Partition (BSP) Trees

Binary space partitioning is used to calculate visibility. To build the BSP trees, one

should start with polygons and label all the edges. Dealing with only one edge at a

time, extend each edge so that it splits the plane in two. Place the first edge in the tree

as root. Add subsequent edges based on whether they are inside or outside. Edges

that span the extension of an edge that is already in the tree are split into two and

both are added to the tree.

Computer Graphics

67

Figure: BSP Trees

 From the above figure, first take A as a root.

 Make a list of all nodes in figure (a).

 Put all the nodes that are in front of root A to the left side of node A and put all

those nodes that are behind the root A to the right side as shown in figure (b).

 Process all the front nodes first and then the nodes at the back.

 As shown in figure (c), we will first process the node B. As there is nothing in

front of the node B, we have put NIL. However, we have node C at back of node

B, so node C will go to the right side of node B.

 Repeat the same process for the node D.

Computer Graphics

68

A French/American mathematician Dr Benoit Mandelbrot discovered Fractals. The word

fractal was derived from a Latin word fractus which means broken.

What are Fractals?

Fractals are very complex pictures generated by a computer from a single formula.

They are created using iterations. This means one formula is repeated with slightly

different values over and over again, taking into account the results from the previous

iteration.

Fractals are used in many areas such as:

 Astronomy: For analyzing galaxies, rings of Saturn, etc.

 Biology/Chemistry: For depicting bacteria cultures, Chemical reactions,
human anatomy, molecules, plants,

 Others: For depicting clouds, coastline and borderlines, data compression,

diffusion, economy, fractal art, fractal music, landscapes, special effect, etc.

Figure: Fractals

Generation of Fractals

Fractals can be generated by repeating the same shape over and over again as shown

in the following figure. In figure (a) shows an equilateral triangle. In figure (b), we can

see that the triangle is repeated to create a star-like shape. In figure (c), we can see

that the star shape in figure (b) is repeated again and again to create a new shape.

11. FRACTALS

Computer Graphics

69

We can do unlimited number of iteration to create a desired shape. In programming

terms, recursion is used to create such shapes.

(a) Zeroth Generation (b) First Generation (c) Second Generation

Figure: Generation of Fractals

Geometric Fractals

Geometric fractals deal with shapes found in nature that have non-integer or fractal

dimensions. To geometrically construct a deterministic (nonrandom) self-similar

fractal, we start with a given geometric shape, called the initiator. Subparts of the

initiator are then replaced with a pattern, called the generator.

Initiator

Generator

Figure: Initiator and Generator for fractals

As an example, if we use the initiator and generator shown in the above figure, we can

construct good pattern by repeating it. Each straight-line segment in the initiator is

replaced with four equal-length line segments at each step. The scaling factor is 1/3,

so the fractal dimension is D = ln 4/ln 3 ≈ 1.2619.

Computer Graphics

70

Also, the length of each line segment in the initiator increases by a factor of 4/3 at

each step, so that the length of the fractal curve tends to infinity as more detail is

added to the curve as shown in the following figure:

Segment Length = 1 Segment Length = 1/3 Segment Length = 1/9

Length = 1 Length = 4/3 Length = 16/9

Computer Graphics

71

Animation means giving life to any object in computer graphics. It has the power of

injecting energy and emotions into the most seemingly inanimate objects. Computer-

assisted animation and computer-generated animation are two categories of computer

animation. It can be presented via film or video.

The basic idea behind animation is to play back the recorded images at the rates fast

enough to fool the human eye into interpreting them as continuous motion. Animation

can make a series of dead images come alive. Animation can be used in many areas

like entertainment, computer aided-design, scientific visualization, training, education,

e-commerce, and computer art.

Animation Techniques

Animators have invented and used a variety of different animation techniques.

Basically there are six animation technique which we would discuss one by one in this

section.

Traditional Animation (frame by frame)

Traditionally most of the animation was done by hand. All the frames in an animation

had to be drawn by hand. Since each second of animation requires 24 frames (film),

the amount of efforts required to create even the shortest of movies can be

tremendous.

Keyframing

In this technique, a storyboard is laid out and then the artists draw the major frames

of the animation. Major frames are the ones in which prominent changes take place.

They are the key points of animation. Keyframing requires that the animator specifies

critical or key positions for the objects. The computer then automatically fills in the

missing frames by smoothly interpolating between those positions.

Procedural

In a procedural animation, the objects are animated by a procedure - a set of rules -

not by keyframing. The animator specifies rules and initial conditions and runs

simulation. Rules are often based on physical rules of the real world expressed by

mathematical equations.

12. COMPUTER ANIMATION

Computer Graphics

72

Behavioral

In behavioral animation, an autonomous character determines its own actions, at least

to a certain extent. This gives the character some ability to improvise, and frees the

animator from the need to specify each detail of every character's motion.

Performance Based (Motion Capture)

Another technique is Motion Capture, in which magnetic or vision-based sensors record

the actions of a human or animal object in three dimensions. A computer then uses

these data to animate the object.

This technology has enabled a number of famous athletes to supply the actions for

characters in sports video games. Motion capture is pretty popular with the animators

mainly because some of the commonplace human actions can be captured with relative

ease. However, there can be serious discrepancies between the shapes or dimensions

of the subject and the graphical character and this may lead to problems of exact

execution.

Physically Based (Dynamics)

Unlike key framing and motion picture, simulation uses the laws of physics to generate

motion of pictures and other objects. Simulations can be easily used to produce slightly

different sequences while maintaining physical realism. Secondly, real-time simulations

allow a higher degree of interactivity where the real person can maneuver the actions

of the simulated character.

In contrast the applications based on key-framing and motion select and modify

motions form a pre-computed library of motions. One drawback that simulation suffers

from is the expertise and time required to handcraft the appropriate controls systems.

Key Framing

A keyframe is a frame where we define changes in animation. Every frame is a

keyframe when we create frame by frame animation. When someone creates a 3D

animation on a computer, they usually don’t specify the exact position of any given

object on every single frame. They create keyframes.

Keyframes are important frames during which an object changes its size, direction,

shape or other properties. The computer then figures out all the in-between frames

and saves an extreme amount of time for the animator. The following illustrations

depict the frames drawn by user and the frames generated by computer.

Computer Graphics

73

Figure: Frames drawn by user

Figure: In-between frames generated by computer

Morphing

The transformation of object shapes from one form to another form is called morphing.

It is one of the most complicated transformations.

Figure: Original graphics

Computer Graphics

74

Figure: A warped version of the original

A morph looks as if two images melt into each other with a very fluid motion. In

technical terms, two images are distorted and a fade occurs between them.

